
Abstract

With the advent of self-driving cars and autonomous delivery robots, identification

of street name signs and traffic signs has become a problem of paramount importance. In

this report, we propose a lucid approach to tackle this problem. The proposed method-

ology is based on Dynamic Thresholding to recognize street signs effectively under

varying conditions of illumination. The thresholding, however, is not performed on the

RGB image space since the algorithm should be robust and invariant to factors such as

illumination. For this reason, we choose the HLS (Hue,Luminance,Saturation) image

space as our primary workspace and implement a robust algorithm that is reasonably

invariant to illumination. Further, the thresholded images are made more accurate by

employing strategic noise reduction techniques. This enables us to use a simple bound-

ing box algorithm to extract the Region of Interest (RoI) after which a Convolutional

Neural Network (CNN) is utilized to classify the traffic signs into pre-defined classes

such as stop signs, speed limit signs, height clearance, etc.

The algorithms are then tested on videos generated in a highly dynamic environment

with a significant amount of artificially induced noise such as camera shake. The videos

were captured by us on the streets of New York City, and the algorithm is proven to be

robust to videos with no staging or environment setup, to simulate its performance in

the major target application areas such as autonomous vehicles and autonomous ground

robots.

1



Contents

Abstract 1

Table of Contents 2

List of Figures 3

1 Introduction 4

2 Literature Review 6
2.1 Existing Approaches . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.2 Drawbacks of Existing Approaches . . . . . . . . . . . . . . . . . . . . 7

3 Methodology 9
3.1 Dynamic Thresholding . . . . . . . . . . . . . . . . . . . . . . . . . . 9

3.1.1 The HSL Image Space . . . . . . . . . . . . . . . . . . . . . . 9

3.1.2 HSL based Dynamic Thresholding . . . . . . . . . . . . . . . . 11

3.2 Noise Reduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

3.3 Classification of detected traffic signs . . . . . . . . . . . . . . . . . . 14

4 Results 17

5 Analysis 22

6 Conclusion 23
6.1 Scope for Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . 24

References 25

Appendix 26

2



List of Figures

3.1 HSL Colour Space . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

3.2 Hue Circle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

3.3 Vector representation of colours on Hue circle . . . . . . . . . . . . . . 11

3.4 Dynamic thresholding in the HSL space for red and green . . . . . . . . 13

3.5 VGG16 model architecture . . . . . . . . . . . . . . . . . . . . . . . . 14

3.6 CNN model architecture . . . . . . . . . . . . . . . . . . . . . . . . . 15

4.1 Dynamic thresholding in the HSL space for red and green . . . . . . . . 17

4.2 Noise reduction by area filtering . . . . . . . . . . . . . . . . . . . . . 18

4.3 Bounding boxes over noise reduced street signs- Test Image . . . . . . 18

4.4 Bounding boxes over noise reduced street signs- Test Image . . . . . . 18

4.5 CNN model results per Epoch . . . . . . . . . . . . . . . . . . . . . . 18

4.6 CNN model accuracy and loss values over number of Epochs . . . . . . 19

4.7 CNN model prediction results . . . . . . . . . . . . . . . . . . . . . . 19

4.8 Screenshot from test video . . . . . . . . . . . . . . . . . . . . . . . . 20

4.9 Screenshot from test video . . . . . . . . . . . . . . . . . . . . . . . . 20

4.10 Screenshot from test video . . . . . . . . . . . . . . . . . . . . . . . . 20

4.11 Screenshot from test video . . . . . . . . . . . . . . . . . . . . . . . . 21

4.12 Screenshot from test video . . . . . . . . . . . . . . . . . . . . . . . . 21

3



Chapter 1

Introduction

Street and traffic signs provide critical guidance information to both drivers and au-

tonomous vehicles alike. Recognition of these signs, especially in large cities, is com-

plicated due to the cluttered environment. Moreover, the inaccuracy and unavailability

of GPS in some regions necessitates another method for positioning and guidance.

In big cities, GPS data is annotated with traffic and street signs, whereas in semi-

urban and rural areas this is not the case and hence, guidance solely depending on GPS

is inefficient and could potentially be dangerous in certain situations. On the other end

of the spectrum, GPS itself is fallible in cities with tall buildings like New York due

to a phenomenon known as ”Urban Canyons”, where the high-rise buildings shield the

Line of Sight (LoS) to tracking satellites, making position triangulation highly sporadic.

Skyscrapers also pose another major problem with positioning using GPS, known

as the ’Multi-path effect’, in which the signals reflect off the surfaces of these tall struc-

tures causing delayed measurements and inaccuracy in positioning due to changes in

the apparent LoS. Currently, autonomous vehicles use vision-based systems solely for

the identification of traffic signs like stop signs or speed limit boards. However, due to

the limitations faced by GPS as described above, vision-based systems could be incor-

porated into the positioning aspect as well, by detecting street name signs for increased

accuracy.

Another potential application lies in positioning for autonomous ground robots such

as delivery bots. With increasing levels of traffic and congestion in large cities, e-

retailers and delivery services like Amazon and FedEx are heading towards autonomous

wheeled ground delivery bots for faster and logistically efficient deliveries. These

wheeled bots travel on sidewalks instead of roads and identification of street names
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and signs could provide the system with vital information in case of GPS malfunctions.

Again, due to the problems faced by GPS in cities, the incorporation of a vision-based

system for street and traffic sign identification would increase the accuracy of position-

ing for all such systems.

This report includes the literature review which consists of a summary of the existing

methods and algorithms to tackle this problem. The identification method is chosen after

critical deliberations over multiple methodologies and is proposed in this report and is

backed by strong test cases. It also delineates noise reduction techniques employed

such as area filtering in Sec.3.2. The classification process using Convolutional Neural

Networks (CNN) is explained in Sec.3.3. The report also discusses the results and

analysis of the proposed algorithm and is concluded with scope for future work in this

regard.
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Chapter 2

Literature Review

2.1 Existing Approaches

Tackling the problem of detecting street and traffic signs has been a topic of interest

in recent times. Methodologies such as a dynamic optimized Hue, Saturation, Values

(HSV) sub-space thresholding, based on S and V channel reference values is proposed

in [1]. Colour segmentation is achieved by applying standard HSV colour filtering,

generating sub-images to calculate seed pixels, and aggregating pixels depending on

the seed saturation values by applying a region growing algorithm. Shape detection is

achieved by using similarity coefficients between the segmented region and the sample

images for road signs. A segmentation rate of 94.6% for red circular signs, 86.3% for

red triangular signs, and 95.7% for blue circular signs is achieved.

Segmentation using this method is performed by introducing a dynamic threshold

in the pixel aggregation process on HSV colour space. The main purpose of dynamic

thresholding is to reduce hue instability in real scenes depending on external brightness

variation. They used a neural network to classify the candidate sign regions according

to the information inside it. Classification is carried out by a feed-forward neural net-

work classifier, where a 36 × 36 pixels candidate is fed to the neural network input. A

classification rate of 84% for red circular signs, 88% for red triangular signs, and 100%

for blue circular signs were achieved respectively.

A comprehensive approach to the recognition of traffic signs from video input is

proposed in [2]. A trained attentive classifier cascade is used to scan the scene in order

to quickly establish regions of interest (ROI). Sign candidates within the ROIs are cap-

tured by detecting the instances of equiangular polygons using a Hough Transform-style

shape detector. To ensure a stable tracking of the likely traffic signs, especially in a clut-
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tered background, they propose a Pixel Relevance Model, where the pixel relevance is

defined as a confidence measure for a pixel being part of a sign’s contour. The relevance

of the hypothesized contour pixels is updated dynamically within a small search region

maintained by a Kalman Filter, which ensures faster computation. Gradient magnitude

is used as a piece of observable evidence for this update process. In the classification

stage, a temporally integrated template matching technique based on the class-specific

discriminative local region representation of an image is adopted. They have evaluated

the proposed approach on a large database of 135 traffic signs and numerous real traf-

fic video sequences. A Recognition accuracy of over 93% in near real-time has been

achieved.

Use of Convolutional Networks (ConvNets) for the task of traffic sign classification

is a common and effective approach as proposed in [3]. ConvNets are biologically-

inspired multi-stage architectures that automatically learn hierarchies of invariant fea-

tures. While many vision approaches use handcrafted features such as HOG or SIFT,

ConvNets learn features at every level from data that are tuned to the task at hand. The

ConvNet architecture was modified by feeding 1st stage features in addition to 2nd stage

features to the classifier. The system yielded an accuracy of 98.97% compared to the

human performance of 98.81%, using 32 × 32 color input images and produced an ac-

curacy of 99.17% for grayscale images instead of color. Interestingly, random features

also yielded a 97.33% accuracy.

2.2 Drawbacks of Existing Approaches

• Colour based thresholding in the sRGB space poses many problems, the most

significant of which being the absence of invariance to ambient conditions such

as illumination and saturation produced by standard camera pre-processing algo-

rithms. Using thresholding over RGB space will not serve the purpose of detect-

ing signs from heavy noise carrying video sequences captured in highly dynamic

environments.

• Use of HSV space does yield better results compared to RGB space thresholding

in terms of being invariant to saturation values in frames. However, this method

is still not invariant to illumination changes.

• Neural networks are very robust in detecting and classifying road signs but they

are not quite as accurate when it comes to identifying street name signs due to the

lack of an existing training dataset.
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• Creating a specific dataset for this purpose is an arduous and computationally

expensive task with a small reward to effort ratio.

• Shape-based template matching is a proposed method and can be introduced to

improve accuracy. However, shape-based matching serves no purpose due to a

large number of potential false positives such as shop name boards. Usage of this

on top of dynamic thresholding, on the other hand, becomes highly redundant.

• Using feature extractors such as SIFT, SURF, FAST, etc. are not optimal due

to the unavailability of specific standard image sets to generate putative matches

and identify RoIs. These algorithms are also computationally more expensive

compared to our proposed method.

After considering these methods and deliberating over their commensurate advan-

tages and disadvantages, we decide to implement the approach presented in Sec.3. The

proposed system was found to be within acceptable detection probabilities, with far

less computational intensity thereby striking a balance between accuracy and amount of

computation required.
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Chapter 3

Methodology

3.1 Dynamic Thresholding

3.1.1 The HSL Image Space

Separating the colour from brightness information is very difficult in an RGB image.

Instead, the HLS (Hue, Luminance, Saturation) colour space can be used(HSL and HLS

used interchangeably). Here, the colour information (Hue and Saturation) can be sep-

arated from the overall brightness intensity values for the image, thus making it more

robust to variation in lighting conditions. This makes it useful for colour segmentation.

Figure 3.1: HSL Colour Space

In the HLS colour space, the Hue component is used to describe the colour and is

represented by angles between [0◦, 360◦]. The saturation denotes the distance from the
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center of the Hue wheel (Fig.3.2) and ranges between 0 and 1. Maximum saturation

of 1 is obtained at the border of the hue circle and the minimum value 0 represents the

center of the circle. Luminance/Intensity values range between [0, 1]. Here, black is

represented by 0 and white is represented by 1. The RGB to HLS conversion is as fol-

lows:

Vmax = max(R,G,B) (3.1)

Vmin = min(R,G,B) (3.2)

L = (Vmax + Vmin)/2 (3.3)

S =

(Vmax − Vmin)/(Vmax + Vmin) if L < 0.5

(Vmax − Vmin)/[2− (Vmax + Vmin)] if L ≥ 0.5
(3.4)

H =


60(G−B)/(Vmax − Vmin) if Vmax = R

120 + 60(B −R)/(Vmax − Vmin) if Vmax = G

240 + 60(R−G)/(Vmax − Vmin) if Vmax = B

(3.5)

If H < 0 then H = H + 360. (3.6)

Figure 3.2: Hue Circle
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3.1.2 HSL based Dynamic Thresholding

A thresholding algorithm is needed in order to segment a street sign from the back-

ground in a given image. Variation in lighting conditions must be considered while

designing a system that will be capable of performing such segmentation. For calculat-

ing the threshold under such cases, the following approach can be used.[4]

Convert the RGB image into HLS colour space. Normalize the Hue, Saturation, and

Luminance channels to [0, 255]. Calculate the normalized global mean (Nmean) for

the image in the L channel (Illumination intensity channel). The reference colour and

the unknown colour can be represented as vectors in the hue circle (Figure 3). In the

hue circle, the hue values are represented as angles and saturation values correspond to

the radius (or the length of the vector) for a given hue angle.

Figure 3.3: Vector representation of colours on Hue circle

A pixel having hue and saturation values as H1 and S1 in a given image can be rep-

resented as a vector. Similarly, the reference colour for the street sign can be represented

by a vector having hue and saturation values as H2 and S2. The distance between these

2 vectors on this circle can be used as a metric for evaluating the similarity between the

2 colours. The Euclidean distance between the 2 vectors will be:

d = [(S2 cos(H2)–S1 cos(H1))2–(S2 sin(H2)–S1 sin(H1))2]1/2 (3.7)

For different values of illumination intensities, the hue and saturation values change
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as seen in Fig.3.1. In case the illumination for an image is high, even if the image has

a street sign, their corresponding hue and saturation values will be high. The threshold

must take this into account. It can be calculated using the normalized global mean.

threshold = e(−Nmean) (3.8)

The street signs are designed in a way that they are easily recognizable in most

cases. In the case of high illumination, the threshold is lower because the normalized

global mean is lesser. Thus, the globalized mean will be related to the Euclidean dis-

tance between 2 vectors and this will allow the luminance of the image to determine

the relationship between an unknown and reference colour. e(−Nmean) is used because

the colours are easily distinguishable when they are present near the bottom of the HLS

space representation, as seen in Fig.3.1. If the luminance of the image is high, and a

threshold of e(Nmean) is used instead, results of segmentation are poor.

To check if the colour of a pixel in the given image is similar to the reference colour,

the algorithm will compare the Euclidean distance with the threshold for all the pixels

in the image. If the Euclidean distance is lesser than the threshold, the pixel will be

considered as an object pixel otherwise it would be categorized as background. The

output will be a binary image containing pixels with a colour similar to the reference

colour.

3.2 Noise Reduction

Once the image has been thresholded using the proposed algorithm, the output still con-

tains multiple instances of salt and pepper noise. To remove this noise, we first take the

negative image of the binarized thresholding output image, just as a convention. After

this, we employ area filtering to get rid of the noise in a very computationally cheap

manner.

To implement this technique, we make certain key assumptions. We first assume that

in the binary image, the area of noisy regions is always less than the detected signboards,

indicating the robust performance of the thresholding algorithm. This assumption is cor-

roborated by examining the thresholding algorithm over a set of test images extracted

at random from the test videos. The second key assumption made is that, at any given

point, our system needs to read up to 3 boards at a time to have sufficient information

for triangulating its position accurately.
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With these assumptions in place, we start the area based filtering process. Initially,

we start a pixel-wise search and start counting the pixels, if there has been a change

from 0 to 1 in pixel values. Recall, in the negative image of our binarized thresholding

output, 1s correspond to regions of interest. The count is updated for every neighbour-

ing pixel with a value of 1. The counting is stopped when there is a pixel value change

from 1 to 0 and the net count is stored as the area of the corresponding object.

As we move down the rows, the area of any object whose upper neighbours have the

same pixel values, are added to the area of the upper object and the area of the current

object is initialized back to 0. By this technique, we end up with an array of regional

areas corresponding to the RoI in our image, and making use of our assumptions, we

only keep the regions whose area is within the 3 largest generated area values. The

robustness of this algorithm is displayed in Fig.3.4

Figure 3.4: Dynamic thresholding in the HSL space for red and green
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3.3 Classification of detected traffic signs

To classify detected traffic signs, we employ the use of CNNs, due their robustness in

studying and learning image based features.

The most common architecture for image processing, using CNNs, is the VGG16

architecture shown in Fig.3.5. There is an input layer, followed by pairs of Convolution

layers and Pooling layers stacked together, depending on how deep the desired model is.

The final convolution layer is followed by a flattening layer, which is in turn followed

by a series of fully connected layers that plug out the output nodes.

Figure 3.5: VGG16 model architecture

The convolution layers perform kernel convolutions on the input image, to extract

certain properties of the image. For e.g., a Gaussian kernel performs image smoothing

on being convoluted with the input image, a Sobel filter is sensitive to edges in the image

and so on. Since the image is in the RGB format, there are 3 kernels, one per channel

and the size of each kernel used is 3× 3.

After each of the convolution layers, a pooling layer is added to group together fea-

tures learned in that layer. Max Pooling is used to take into account the strongest of the

learned features and reject the rest. This output is then passed as an input to the next

convolution layer and the number of such layers depends on the depth of the desired

model.
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Each convolution layer may be associated with a padding that defines how the ker-

nel is convoluted with corner and edge pixels, and an activation function that deals with

altering the outputs such that the net output encompasses important learned features.

It dies this through deciding which neurons fire in each layer and thereby controlling

which weights are updated in each layer.

The net output of all the convolution layers however, is not flat since the image is a

multi-channel matrix. For this reason, the output of the convolution layers is flattened

before passing it as an input to the fully connected layers. These layers perform in ex-

actly the same manner as a simple Deep Neural Network (DNN).

Figure 3.6: CNN model architecture

Simple DNNs are composed of an input layer, followed by stacks of fully connected,

hidden layers of neurons that finally feed out to the output layer. Each input node is

passed through each node of the first hidden layer and the corresponding weights ex-

tract the input feature vectors. The output of each node of the first hidden layer is fed

as an input to each node of the second hidden layer and this process is repeated for each

layer.
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The weights are tracked and a bias may be introduced to lead the net output to con-

verge to a particular vector. The output nodes are then back-propagated, depending on

the error function associated with the output vector of the first pass. This permits ef-

ficient updating of weights making the model more accurate for applications such as

clustering or classification.

When an optimal model has been trained, it can be tested with a different set of

inputs and the accuracy of classification is generally commensurate to the training ac-

curacy, since back-propagation is a strong weight optimization algorithm.

The major drawback with using simple DNNs however, is that training large data

sets drastically affects the computation cost, since each input node is passed through all

hidden layer nodes in the fully connected setup. This is where CNN has a comparitive

advantage as it shares its weights, allowing it be much deeper, with the same number of

tune-able parameters. It becomes evident that CNN stacks followed by fully connected

layers perform better.

This CNN based model architecture, shown in Fig. 3.6 is robust to learning image

features and the depth of the model ensures feature maps with higher level features

learned. These higher level features are crucial when it comes to classifying images with

features that are virtually indiscernible on a cursory glance. The lower level features

help identify basic discrepancies that are equally important for classification.
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Chapter 4

Results

To test the proposed methods, videos of the streets of New York were taken using a

smartphone camera. Dynamic thresholding was performed in the HSL space with ap-

propriate values for green and red, results of which are shown in Fig.4.1.

Further, for noise reduction, area filtering as explained above is executed on the

thresholded image which is shown in Figs.4.2. 4.3 and 4.4 display thresholded, noise

reduced images with bounding boxes over the street signs.

The computation details are as follows:

These are results based on running the algorithm over a 2.5GHz

Intel MLK CPU, with no GPU support, averaged over 440 frames

• Computation Time for Detection Algorithm = 15ms/frame

• Computation Time for Detection and Classification (CNN) Algorithms run suc-

cessively = 240ms/frame

Figure 4.1: Dynamic thresholding in the HSL space for red and green

The classification results from the CNN model is shown in Fig.4.5.

The evolution of loss and accuracy of parameters is shown in Figs.4.6 and 4.7.

17



Figure 4.2: Noise reduction by area filtering

Figure 4.3: Bounding boxes over noise reduced street signs- Test Image

Figure 4.4: Bounding boxes over noise reduced street signs- Test Image

Figure 4.5: CNN model results per Epoch

Figs.4.8, 4.9, 4.10, 4.11 and 4.12 show screenshots taken from the dynamic thresh-

olding algorithm applied to test videos captured on the streets of New York City.
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Figure 4.6: CNN model accuracy and loss values over number of Epochs

Figure 4.7: CNN model prediction results
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Figure 4.8: Screenshot from test video

Figure 4.9: Screenshot from test video

Figure 4.10: Screenshot from test video
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Figure 4.11: Screenshot from test video

Figure 4.12: Screenshot from test video
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Chapter 5

Analysis

The thresholding algorithm is found to be very robust to highly tricky scenarios involv-

ing multiple ambient factors and disturbances such as camera shake, people and vehicles

moving across the frames in an uncontrolled manner, etc. This is quite accurately rep-

resented in Figs.4.8 and 4.12.

In the case of frames where there are other green objects that take up significant

space in the frames, our algorithm is just as robust as demonstrated in Figs.4.11 and

4.12.

Fig.4.9 represents one of the drawbacks that arise due to the imaging device used.

All test videos were shot on a smartphone camera (Model name: OnePlus 5T). This

camera has an in-built post-capture processing algorithm that is used to counter chang-

ing exposure values. This happens when the camera sensor is suddenly pointed at a

bright light source such as the sky in this case. When this happens, as is seen in Fig.4.9,

the smartphone automatically drops the S and L channel values for all pixels in the

frame according to a predefined Auto Exposure (AE) adjustment algorithm. Unless we

know the exact algorithm, which is proprietary of the manufacturer, it is impossible to

account for this sudden change in the S channel values, owing to which the sky crosses

the detection threshold and is included in the output for that frame.

However, this problem can be easily evaded by using a standard imaging device with

no post-capture image processing algorithms applied to the frames.
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Chapter 6

Conclusion

This work proposed a dynamic thresholding algorithm for the identification of street and

traffic signs based on the Hue, Saturation and Luminance values. Justification for the

usage of the said color space is presented and further noise reduction was performed.

For the classification of the various traffic signs, a CNN was utilized. Results were pre-

sented to justify the effectiveness of the proposed methods. However, certain issues still

persist which pave the way for future work.

First, is utilization of a smartphone camera with inbuilt Auto Exposure Correction

and Electronic Image Stabilization which led to excessive noise when the image features

were morphed. The process of noise reduction includes the assumption of limiting

maximum detected features from the thresholded image leading to loss of information.

Another issue for which the reasons remain unknown is the detection of highly reflective

surfaces by the proposed algorithm.
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6.1 Scope for Future Work

Future work with regard to closing the loop on this project would involve:

• Use of a robust region selection algorithm to determine which of the boards is of

higher priority and read those first

• Perspective transformation is to be performed while preserving text related fea-

tures

• Developing a robust OCR algorithm to read sign boards

• Comparing the read text from the boards and cross referencing it with non-GPS

based map data, to triangulate current location / learn data that is under annotated

on available digital maps
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