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Abstract—The Purcell’s Swimmer (micro-swimmer) is a really
intriguing topic mainly because its dynamics is complicated owing
to the Low-Reynolds Number conditions that it is designed
to operate in. This makes any intuitive notion of human-like
propulsion through a fluid invalid. This project deals with the
modeling and simulation of basic controller to implement motion
primitives, the three fundamental unit motions for a planar three
link swimmer, (pure X-direction, pure Y-direction, pure Θ) which
are all defined with respect to the net motion of the center link
about its COM.

Index Terms—Purcell’s Swimmer, Low Reynolds Number con-
ditions, Geometric swimming, optimal gait, motion primitives

I. INTRODUCTION

Swimming at low Reynold’s number is very different from
a general notion of swimming primarily because, inertial
effects play almost no significant role against the effects
of viscosity. This means that any body moving under such
conditions will cause the local boundary layer to move along
with it, or as stated by E.M.Purcell, ”you can’t shake off
your environment” [2]. A direct implication of this is that
any symmetric gait will not produce any net motion per cycle
since the distance moved forward in the propulsion stroke
will be equal to the distance moved back in the return stroke.

In his paper, Purcell proposes a gait to generate motion for
the three link swimmer. This, drift-free three link swimmer is
our subject of interest for this paper as shown in Fig. 1

Fig. 1. Purcell’s Three Link Swimmer

II. SYSTEM MODELS

The Purcell’s Swimmer’s dynamics is explicitly defined in
[1]. We make the assumption of the system existing at very

low Reynold’s number environments and this implies, the
momentum terms are dropped from the general reconstruction
equation [1]. The general reconstruction equation is given by,

ζ = −A(r)ṙ + T (r)p,

reducing it to the kinematic reconstruction equation,

ζ = −A(r)ṙ, (1)

where A is the local connection form matrix, ζ is the body
velocity vector,

[
ẋ ẏ θ̇

]>
and r =

(
α1, α2

)
, is the joint

space parameters defined in Fig.1, with ṙ being the joint space
velocity vector. The drag forces and moments are thereby
found to be functions of ζ. This enables us to write the net
force F =

[
Fx Fy M

]
> as,

F = ω(α)

[
ζ
α̇

]
which on reducing with considerations for low Reynold’s
number conditions (net force on isolated system is zero) gives,
A = ω−11 ω2 as explained in Sec.[II-C]. We will use this
explicit definition of the connection form in later sections of
this report.

A. The Parallel Parking Problem

To understand the intuitive meaning behind this system
equation better, we look at the parallel parking problem.

The parallel parking problem is quite a fundamental
exercise to understand the most basic square gait, a four step
drive-steer control sequence and mainly the significance of
non-holonomic constraints in day to day life. The Matlab
code for this makes our two wheeled car start with the axle
centered at the origin, parallel to the X-axis. The car first
drives straight up to the first plot in Fig.2. It then performs
a steering motion with the axle center being the center of
rotation to the position shown in the top right plot of Fig. 2.

The car then drives backward maintaining the angular
orientation to the position show in the bottom left plot of
Fig. 2. Finally performing a steering maneuver as in Step 2
to orient itself parallel to the X-axis arriving at the position
shown in the last plot of Fig.2.

Evidently performing these motions sequentially enables us
to have a net translation in a direction that seems impossible
to achieve with the given set of available, independent



Fig. 2. Plots showing the square-gait, drive-steer control sequence
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Fig. 3. Diagram to calculate the final position of the car

actuations. There is a negligible deviation in the Y direction,
which can be minimized by decreasing the time-step for
which each of the symmetric drive and steer gaits are
performed.

Fig.3 shows the trajectory of the car (red lines), starting at
the bottom left. Taking the length of each red line to be l and
the steer angle to be θ, we get the net displacements along the
axes as,

X = ĀD = sin θ

Y = C̄D = 2l sin2 θ

2

Here, Y is the error that arises out of the non-holonomy of
the system.

B. Purcell’s Swimmer System Model

Having understood the intuitive meaning of symmetric
gaits, we define our swimmer’s system dynamics in order to
understand its state space parameters.

The dynamic model described above links the body
velocity directly to the shape velocity through the local
connection form matrix. First, the connection form matrix
A(r) is calculated using the explicit definition given above.

Having found the connection form matrix, we can define
the state space equation of our system as,

α̇1

α̇1

ζ

 =

 1
0

A(α1, α2)

 α̇1 +

 0
1

A(α1, α2)

 α̇2

= g1(α1, α2)α̇1 + g2(α1, α2)α̇2 (2)

Here g1, g2 are the control vector fields. The control inputs
α̇1, α̇1 are separated so that it is easier to implement an
asymmetric gait controller knowing the individual control
vector fields g1, g2 since it is easier to obtain their Lie Algebra.
The flow of the Lie Algebra will in turn work towards
identifying gaits that minimize error, thereby forming our
primary controller.

C. Calculating Model Parameters

Before we move on to studying the controllability and
designing motion primitives, we first have to calculate the
Connection Matrix (′A′) parameters.

First, we model the forces and moments on the swimmer,
under the slender body dynamics assumptions implying the
ratio of principal lateral drag coefficient to the longitudinal
drag coeffiecient being 2 : 1 [1],

Fi,x =

∫ L

−L

1

2
kζi,xdl = kLζi,x

Fi,y =

∫ L

−L
kζi,ydl = 2kLζi,x

Mi =

∫ L

−L
kl(lζi,θ)dl =

2

3
kL3ζi,θ

where k is the differential viscous drag coefficient.
Next, we calculate the relation between the joint space

velocities to the body velocity as,

ζ1 =

 cos(α1)ζx − sin(α1)ζy + sin(α1)Lζθ
sin(α1)ζx + cos(α1)ζy − (cos(α1) + 1)Lζθ + Lα̇1

ζθα̇1


ζ2 = ζ

ζ2 =

 cos(α2)ζx − sin(α2)ζy + sin(α2)Lζθ
−sin(α2)ζx + cos(α2)ζy + (cos(α2) + 1)Lζθ + Lα̇2

ζθα̇2


Next we write the net force and moment equation for all

the links of the system as,FxFy
M

 =

 cos(α1)sin(α1)0
−sin(α1)cos(α1)0

Lsin(α1)− L(1 + cos(α1))1

F1,x

F1,y

M1

+

F2,x

F2,y

M2

+

 cos(α2)− sin(α2)0
−sin(α2)cos(α2)0

Lsin(α2)L(1 + cos(α2))1

F3,x

F3,y

M3

 (3)

On combining the above equations, we see that the linear
relation between the net force and the velocity vectors is
maintained with an additional non-linear dependency on α.
Thus, we can write the above equation as,



FxFy
M

 = ω(α)3×5
[
ζ
α̇

]
(4)

We split ω(α) as 3 × 3 appended with a 3 × 2 in order to
split the velocity terms and get an explicit relation between
the two. [3]

FxFy
M

 =
[
ω3×3
1 ω3×2

2

] [ζ
α̇

]
(5)

Since the system is at Low Reynolds number conditions,
the major implication on the system is that the net external
forces and moments on the isolated system are zero. Thus,

0
0
0

 =
[
ω3×3
1 ω3×2

2

] [ζ
α̇

]
(6)

This gives us a relation between the body velocity vector
and the joint space velocity vector as,

ζ = −ω−11 ω2α̇ (7)

Comparing Eqn. (7) and (1), we can calculate the local
connection matrix A and thus the model definition is complete.

III. CONTROLLABILITY

Since our system is non-linear and encloses non-holonomic
constraints, instead of defining stability and controllability in
terms of the Lyapunov definition, we consider the smooth
integral manifolds the system can traverse and define control-
lability in terms of the Lie Algebra of the control vector fields
using Chow’s Theorem. [4]

In this regard, we first define strong and weak controllability
according Chow’s definition based on the traversable set of
smooth manifolds.

A system is said to be strongly controllable if for any given
initial joint state (q0) and final joint state (qf ), there exists a
time T > 0 such that the system state at t = 0 is q0 and at
t = T is qf . Also, there exists a curve X(t) passing through
q0 having X(0) = q0 and X(T ) = qf .

A system is said to be weakly controllable if for any
q0 = [x0g0] and qf = [xfgf ], where x, g are the position and
shape respectively, if there exists a time T > 0 and a base
curve X(t) such that it satisfies X(0) = q0 and the horizontal
lift of the base curve satisfies X(T ) = xf .

With these definitions in place we plan our controller to use
the manifold traversal equation to reduce the error.

IV. CONTROL LAW

The non-holonomic constraints on our system make achiev-
ing strong controllability at all points a highly complex task.
So we design a control law using the weak definition for
controllability, and this control law will serve as our position
controller for the three motion primitives, pure-X, pure-Y and
pure-θ.

According to Chow’s theorem, the system is said to be
weakly controllable if,

span(LieAlgebrae(g1, g2)) = span(Tq(Q))

where Tq(Q) are the traversable states along a given smooth
manifold. For a drift-less system, span(Tq(Q)) = 5 [3]. Thus,
to ensure controllability, we have to ensure span(LHS) = 5.
This is done by neglecting the higher order Lie Algebra terms.

span(g1, g2, [g1, g2], [g1, [g1, g2]], [g2, [g1, g2]]) = span(Tq(Q)
(8)

So, to ensure weak controllability, our control law should
be a linear combination of the Lie Algebra terms is Eqn.8. We
calculate the co-efficients of each of the terms as follows,

[
g1 g2 [g1, g2] [g1, [g1, g2]] [g2, [g1, g2]]

]

C1
C2
C3
C4
C5

 =


B1
B2
B3
B4
B5


(9)

where, Ci(1i5) is the matrix of coefficients and Bi(1i5) is the
desired reference state (orientation-position) matrix.

Expanding each Lie Algebra solving and solving Eqn.9, we
get,C1 = C2 = 0 and the other three are say, α, β, γ. These
are calculated using a Force analysis of the model parameters
as explained in [3]. Once we have the co-efficients matrix, we
define the control law as the net flow composition equation
[3] given below which acts as the desired motion controller.



φ
α[g1,g2]β[g1,[g1,g2]]γ[g2,[g1,g2]]
t

= lim
n→∞

[(φ
α[g1,g2]
t/n ◦ φβ[g1,[g1,g2]]t/n ◦

φ
γ[g2,[g1,g2]]
t/n )n]

= lim
n→∞

[(φ−g2√
t/n
◦ φ−αg1√

t/n
◦ φg2√

t/n
◦

φαg1√
t/n

)n◦

(((φg2√
(
√
t)/n
◦ φg1√

(
√
t)/n
◦ φ−g2√

(
√
t)/n
◦

φ−g1√
(
√
t)/n

)n) ◦ φ−βg1√
t/n
◦

((φ−g2√
(
√
t)/n
◦ φ−g1√

(
√
t)/n
◦ φg2√

(
√
t)/n
◦

φg1√
(
√
t)/n

)n) ◦ φβg1√
t/n

)n]

(((φg2√
(
√
t)/n
◦

φg1√
(
√
t)/n
◦ φ−g2√

(
√
t)/n
◦ φ−g1√

(
√
t)/n

)n) ◦ φ−γg2√
t/n
◦

((φ−g2√
(
√
t)/n
◦

φ−g1√
(
√
t)/n
◦ φg2√

(
√
t)/n
◦ φg1√

(
√
t)/n

)n) ◦ φγg2√
t/n

)n]n

This complex equation has a very simple intuitive meaning.
It essentially is a linear combination of the three motion
primitive generators defined by the terms corresponding to
C3, C4, C5. These terms are calculated from the desired
reference state matrix and correspond to the position and
orientation of the base link. Since the system is found to be
weakly controllable, we can only control system to reach
a final desired position and orientation by traversing the
corresponding smooth manifold. The final shape parameters
of the system cannot be controlled in its reachable space.

At each time step, new co-efficients are calculated from
the position and orientation of the next time step, and are
fed to the flow equation. The flow equation crunches out
the required gait since g1, g2 correspond to the joint state
parameters α1, α2. This can essentially though of as an on-off
sequential controller.

The terms that become zero represent ’off gaits’ and the
rest are ’on gaits’ and what terms are turned on or off are
defined by the co-efficients calculated at each time-step.
These inturn correspond to the state error of the base link,
and thereby the system is pushed to converge towards the
reference position.

However, the system can only reach the reference point by
travelling along the traversible manifolds, meaning trajectory
tracking becomes a very arduous task.

V. SIMULATION RESULTS

The code flow for the simulation is given as,

Fig. 4. Simulation Code Flow

Fig. 5. Pure-X Motion, Gait Simulation

Fig. 6. Pure-Y Motion, Gait Simulation

Fig. 7. Pure-θ Motion, Gait Simulation

The simulation results are shown in Figs. 5,6,7.
From the figures, we see how each parameter changes for

pure-X, pure-Y and pure-θ motion respectively. The plot on



the bottom left of each image represents the gait calculated
by the flow control law. These gaits are essentially the α and
α̇ values obtained from the flow equation, and are executed
with a time lag of

√
t
n in the order prescribed by the flow

equation. This is a lucid example of how assymetric the gaits
need to be to achieve motion at Low Reynolds numbers.

It is evident from the plots of the x, y, θ parameters, that the
control law behaves as an on off controller with the error value
in the non-objective parameters averaged over each gait cycle.
This is the reason for the triangular wave-like characteristic of
the non-objective parameters in each plot.

VI. CONCLUSIONS FUTURE WORK

The motion primitives, pure-X, pure-Y and pure-θ were
successfully achieved with acceptable error in other two state
parameters for each case as shown in Sec. V. The future
scope for work involves designing a controller that is robust
to error correction by chosing the optimal correction strategy
and selecting optimal gaits that will thereby enable efficient
trajectory tracking despite the existence of non-holonomic
constraints. The steps that need to be realised along with this,
for accurate real world simulation would be to model and
design a separate controller on top of the trajectory tracking
controller to model and negate the natural drift in the system.
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