
Exogenous Fault Detection of Autonomous Mobile
Robots to Assist in Motion Planning

Guide: Dr. Carlo Pinciroli
Dept. of Robotics Engineering
Worcester Polytechnic Institute

Worcester, USA
cpinciroli@wpi.edu

1st Pratik Jawahar
Dept. of Robotics Engineering
Worcester Polytechnic Institute

Worcester, USA
pjawahar@wpi.edu

Abstract—Motion Planning has advanced significantly with
respect to autonomous mobile robots over the years to the point
where there are a plethora of algorithms that are getting more
accurate with every research article in the field. However, when
it comes to implementing these algorithms on real autonomous
mobile robots, a lot of other parameters factor in to the success
or failure of the algorithm. The most common factors that
might affect a motion planning algorithm are faulty sensors and
actuators. Thus, there is an evident need for an error analysis
algorithm that supports and ensures acceptable implementation
of the motion planning algorithm. Such a system is even more
important in autonomous robots that operate without human
monitoring for the most part. This project explores and provides
one such error analysis algorithm that can be used to detect a
fault in the robot during operation.

Index Terms—error analysis, autonomous, ground robots,
wheeled robots

I. INTRODUCTION

Autonomous Mobile Robots (AMR) have been heavily
researched since their inception to this day, primarily because
of the myriad possible applications for such robots be it in
a search and rescue based operation or for industrial tasks
such as warehouse automation. There has been significant
development in terms of the major systems that comprise
AMRs such as sensing and perception, motion planning, con-
trol algorithms and hardware systems. Most of these systems
are well developed and capable of being readily deployed for
tasks such as warehouse automation.

However, when it comes to operation in a real dynamic
environment, hardware components like sensors and actuators
can fail without warning due to multiple reasons. Since
autonomous robots are developed with the intention of not
requiring constant human monitoring, the system needs to be
able to detect such faults and errors during operation.

Fault Detection and Error Analysis is not a new field in
itself. It has been researched upon in depth for applications
of other industrial electro-mechanical devices that operate
without constant human monitoring such as HVAC systems.
The most common technique used in such fault detection
systems for electro-mechanical devices is model based fault
detection.

Fault Detection for AMRs however, is a comparatively
under-researched field, but is equally important as any other

sub-system. The primary motivation of this paper is to address
the lack of research work in the area of fault detection for
autonomous robotic systems, sto facilitate deploying such
systems in real dynamic environments.

II. RELATED WORK

Fault Detection systems have been in operation since the
advent of automation in electro-mechanical devices, with
the earliest examples dating back to the early 1980s. The
increasing complexity of devices and systems with increasing
levels of autonomy perpetuates the need for such systems
that preserve the safety of the device itself and its operating
environment. The earliest methods involved using additional
proprioceptive sensors and hard-coding limits of normal op-
eration. This ensured that the sensors detected common faults
that were either recurrent or predictable in terms of whether
they could occur and the detection system itself only detects
when that particular fault occurred. These were common sub-
systems during the rise of the aviation industry. However, they
became obsolete when considering sensor data reliability.

The next advancement came when a list of model based
fault detection systems were developed. These systems use
a modelling technique to encapsulate the normal operating
state of the system, and comparing this with the instantaneous
state of operation at each time step [5]. This enables the fault
detection system to pick out multiple errors without the need
to hard-code each error individually.

The most significant advancement in fault detection systems
came with the use of particle filters to study and monitor
system operation [3] [7]. These filters employ probabilistic
models to assign a probability to the normal functioning of
each sub-system based on certain parameters. Combining these
using conditional probability based algorithms, an efficient
real-time system can be built to detect fault or anomalies in
system operation. Such systems are commonly used in space
missions like the Mars Rover mission by NASA, or on the
International Space Station to monitor systems that cannot be
monitored by humans continually.

Recent advancements in this field employ the use of
Machine Learning techniques to classify system operation
as normal or anomalous by building a model to learn the
systems normal states of operation [6]. Most commonly used

techniques involve classification using Support Vector Ma-
chines (SVMs) or building Artificial Neural Networks such
as Multi-Layered Perceptrons (MLP) that learn more accurate
representations of the system and can thus be used to identify
faults accurately and in real time.

III. METHODOLOGY

A. Objective

The goal of this paper is to build a Fault Detection system
for an autonomous robot, such that locomotion based tasks
such as motion planning and trajectory tracking can be per-
formed in a dynamic environment.

Fig. 1. Differential Drive Robot [4]

B. System Model

1) Kinematic Model: The Kinematic Model represents the
body velocity of a system in terms of its joint velocities. In our
case, the body velocity is the velocity of the Center of Mass
of the robot and the joint velocities are the wheel velocities.ẋraẏra

θ̇

 =

R
2 cos θ R

2 cos θ
R
2 sin θ R

2 sin θ
R
2L

−R
2L

[ϕ̇R

ϕ̇L

]
(1)

2) Kinematic Constraints: The kinematic constraints for the
differential drive robot are obtained from two non-holonomic
constraints, no lateral slip condition and pure rolling constraint
[4]. This means the wheels are always in pure rolling and
there is no sliding, and the robot cannot slip directly along
the direction of its axle.

Λ(q)q̇ = 0 (2)

where,

Λ(q) =

− sin θ cos θ 0 0 0
cos θ sin θ L −R 0
cos θ sin θ −L 0 −R

 (3)

and,

q̇ =
[
ẋra ẏra θ̇ ϕ̇R ϕ̇L

]T
(4)

3) Dynamic Model: We form the Dynamic Model of the
system using the Lagrangian approach that gives the required
model shown in Eq.5

M(q)q̈ + V (q, q̇)q̇ + g(q) = B(q)τ − ΛT (q)λ (5)

where, M(q) is the inertia matrix, V (q, q̇) is the coriolis
matrix, g(q) is the gravitational matrix which vanishes since
we assume planar motion on the ground, B(q) is the torque
input matrix, τ is the net torque on the system, Λ(q) is
derived from the kinematic constraints mentioned above and
λ reprsents the Lagrange multipliers λi.

M(q) =


m 0 −md sin θ 0 0
0 m md cos θ 0 0

−md sin θ md cos θ I 0 0
0 0 0 Iw 0
0 0 0 0 Iw


(6)

V (q, q̇) =


0 −mdθ̇ cos θ 0 0 0

0 −mdθ̇ sin θ 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

 (7)

B(q) =


0 0
0 0
0 0
1 0
0 1

 ;λ =


λ1
λ2
λ3
λ4
λ5

 (8)

This dynamic model is used to generate simulations of
the robot since its a complete representation of the system
dynamics and it is also very useful when it comes to writing
control algorithms to make the robot perform desired tasks.

C. Particle Filter Algorithm

The idea of a Particle Filter (PF) is presented as a salient
approximation of recursive probabilistic filters used for state
estimation, for e.g. Bayesian Filters [7]. State estimation is the
process of predicting the state of the system, given a set of
sequential information on the system. It is broadly classified
into Batch estimation and Recursive estimation. The former
considers all sequential data points with equal importance.
As a result of this, it is very computationally expensive even
for minutely long sequential processes. Recursive estimation
on the other hand takes a probabilistic approach with higher
importance given to past and future events that are closest to
the state to be estimated. In our work, we explore recursive
estimation techniques since trajectory tracking is usually a
long sequential process.

For this paper we focus on a first order Markov formulation
for discrete time state estimation. Consider X = {x1...xt} to
be the system states for time {1 : t}. Let z1:t = {z1...zt}
be the state measurements and at be the control action for the
interval (t− 1, t]. The aim of the state estimation problem is to

calculate the probability density function (pdf) p(xt|z1:t, at).
The Markov formulation of this is given in Eq.9

p(xt|z1:t, at) = ηtp(zt|xt)
∫
p(xt|at, xt−1)

× p(xt−1|z1:t−1, at−1)dxt−1 (9)

where, ηt is a normalizing constant. Here,p(zt|xt) is the
observation function; p(xt|zt, xt−1) is called the state transi-
tion function. This formulation assumes that the initial pdf of
the system or the prior pdf p(x0) is known. Since there is no
closed loop solution to this Markov formulation, we implement
a particle filter approximation. A particle filter is essential
a Monte Carlo approximation of the posterior distribution in
Eq.9 [7].

Particle filters use a fully initialised set of N particles that
are formulated as, {(x1t , w1

t), ...(xNt , w
N
t)} where (xit, w

i
t) is

the state and importance weight of particle ′i′ at time ′t′. The
Monte Carlo approximation of the posterior distribution is then
given by,

p̂N (xt|z1:t, at) =

N∑
i=1

w
[i]
t ∂x[i]

t
(xt) (10)

where, ∂ is the Dirac Delta Function. It can be shown that
as N → ∞, Eq.10 → Eq.9, which is the true posterior
distribution.

Particles of every subsequent time step are then updated by
recursively drawing elements from the approximated posterior
distribution. This however is not a very feasible task to do in
terms of computational intensity, so we draw from a more
easily conceivable approximated distribution ′q()′ which is
called the importance distribution. The discrepancy caused by
this approximation is accounted for by using the importance
weights associated with each particle, which is given by,

w
[i]
t =

p(x
[i]
t |x

[i]
t−1, at)

q(x
[i]
t |z1:t)

(11)

The choice for q() determines the verity of the algorithm.
Generally, the simplest choice for q() is the transition proba-
bility function, which makes the importance weight equal to
the observation likelihood function. This forms the algorithm
for the Classical Particle Filter (CPF)

1) Degeneracy Problem:: The CPF algorithm faces a recur-
ring issue of degeneracy. After a small number of iterations,
the weights of all particles but for one, become negligible,
since the variance of the particles in a CPF is bound to increase
with time. This problem can’t be avoided directly, and it means
a lot of computation is wasted in providing negligible weight
updates.

A solution to this problem comes from tracking an effective
number (Neff) of particles (whose weights are significant),
and every time Neff falls below a set threshold (NT), the
particles are resampled with techniques such as resampling
with replacement [1]. Neff is calculated as,

Neff =
N

1 + V ar(w∗it)
(12)

where, w∗it is the true weight given by Eq11. Since this can’t
be calculated easily, we make a tangible approximation as,

ˆNeff =
1∑N

i=1(wi
t)

2
(13)

The resampling is then performed according to Algorithm
2. in [1]. The final modified particle filter algorithm is then
given by,

Algorithm 1: Modified Particle Filter

Result:
[
{xit, wi

t}Ni=1

]
= PF

[
{xit−1, wi

t=1}Ni=1, zt
]

Set p(x0) to the prior pdf;
Draw intitial particles B0;
for i=1:N do

Draw xit ∼ q(xt|xit−1, at);
Assign wi

t according to Eq.11;
end
Calc. total weight, Wtot = SUM

[
{wi

t}Ni=1

]
;

for i=1:N do
Normalize: wi

t = W−1totw
i
t

end
Calc. ˆNeff from Eq.13;
if ˆNeff < NT then

Resample acc. to Alg.2 in [1]
end

IV. EXPERIMENTAL RESULTS

A. Experiment

The experiment for testing the Fault Detection system will
be centered around an autonomous differential drive robot
shown in Fig.1 [4]. The robot’s goal would be to track a given
trajectory. The sub-systems of the robot for our experiment
include two actuators (one to drive each wheel), two wheel
speed sensors, and an external 2D imaging sensor which
gives the ground truth data about the robot states, but has no
information about the control inputs the robot receives. Fig.2
shows a single frame from the imaging sensor output. This is
the simulation environment for the experiment.

During the trajectory tracking operation, a random type of
fault will be injected into the system at a random instant for a
random duration, and the fault detection system will be used
to detect it. The performance of the detection system will be
measured by a metric that accounts for the time lag between
the fault being injected and detected.

The types of faults that could be injected individually or
together include:

1) Actuator error: The actuator is not able to provide the
required torque or provides excess torque causing a
change in wheel speed

2) Sensor error: The actual wheel speed and the wheel
speed recorded by the sensor do not match

Fig. 2. Simulation Environment

First, based on a given start and end point and the map, a
Probabilistic Roadmap (PRM) algorithm is used to construct
the required trajectory [2]. Fig.3 represents the working of the
algorithm and the extracted trajectory.

Fig. 3. Probabilistic Roadmap Output

A simple model based trajectory tracking controller is then
implemented for the robot to track the extracted trajectory. At
a randomly chosen instant and for a randomly chosen duration,
a fault is induced to simulate uncontrollable slip, as might be
the case if say, that region of the floor were covered in a
lubricant or that region might have been a slippery slope and
not a flat surface as shown in the 2D map. The proprioceptive
measurements however are not changed, which means the
robot would assume it is in a normal state of operation. This is
a combination of both actuator and sensor error and the goal
of the fault detection system here would be to detect the fault
as early as possible, despite these complications.

B. Results

The modified particle filter algorithm gives a state estimate
at each time step based on previous states, measurements
and control inputs. The absolute error between the predicted
state and the actual state is assumed to be the metric for this
experiment. An error threshold is set and when the absolute
state error crosses the threshold, the system is said to have
entered a Fault State. The robot is then brought to a halt such

that its fault can be diagnosed and fixed. Diagnosis and Fixes
are however, out of the scope of this project.

Fig.4 shows the evolution of the absolute state error for a
case where no error was injected. It is evident that the error
decreases over time meaning the filter gets more confident in
state estimations as compared to the estimate based on just
the prior pdf.

Fig.5 shows the evolution of the state error with time. Under
normal operation the absolute error decreases with time as
expected but as soon as the system enters a faulty state, the
absolute error value explodes, indicating a fault.

Fig. 4. Evolution of Absolute State Error vs Time

Fig. 5. Evolution of Absolute State Error vs Time

The detection threshold is set at ErrThresh = 2m which
is around 10 times the mean values under normal operation.
Under this configuration, the system takes just 9 time steps
since error injection for the error to cross the threshold.
With a sampling rate of 0.1, the fault is detected in ∼ 0.9s
The average state error value for normal operation is around
0.06m and a fault state immediately causes the state error to
explode, meaning the threshold can be set to a much lower
value than ′2′ for faster detection. Fig.6 shows the simulation
result corresponding to Fig.5.

V. CONCLUSIONS

The modified particle filter is an efficient, computationally
optimal algorithm for fault detection based on discrete-time
state estimation. The more the number of particles used, the
more accurate the fault detection system is, implying the

Fig. 6. Simulation Result corresponding to Fig.??

lesser the time elapsed in detecting a fault after it has been
injected. However, the particle filter itself relies heavily on the
system model and can only track a pre-defined set of states.
This means for systems whose states cannot be modelled
efficiently, the PF algorithm cannot track those states. It would
be interesting to study algorithms for fault detection that are
not as heavily model dependent as part of future work.

REFERENCES

[1] M. S. Arulampalam, S. Maskell, N. Gordon, and T. Clapp. A tutorial on
particle filters for online nonlinear/non-gaussian bayesian tracking. IEEE
Transactions on Signal Processing, 50(2):174–188, 2002.

[2] Valérie Boor, Mark H Overmars, and A Frank Van Der Stappen. The gaus-
sian sampling strategy for probabilistic roadmap planners. In Proceedings
1999 IEEE International Conference on Robotics and Automation (Cat.
No. 99CH36288C), volume 2, pages 1018–1023. IEEE, 1999.

[3] Richard Dearden and Dan Clancy. Particle filters for real-time fault
detection in planetary rovers. 2001.

[4] Rached Dhaouadi and A Abu Hatab. Dynamic modelling of differential-
drive mobile robots using lagrange and newton-euler methodologies: A
unified framework. Advances in Robotics & Automation, 2(2):1–7, 2013.

[5] Paul M Frank and Xianchun Ding. Survey of robust residual generation
and evaluation methods in observer-based fault detection systems. Journal
of process control, 7(6):403–424, 1997.

[6] LB Jack and AK Nandi. Fault detection using support vector machines
and artificial neural networks, augmented by genetic algorithms. Mechan-
ical systems and signal processing, 16(2-3):373–390, 2002.

[7] Vandi Verma. Tractable particle filters for robot fault diagnosis. PhD
thesis, Stanford University, 2004.

