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Abstract
One of the largest risk factors that lead to accidents is driving
under the influence of alcohol. In the United States, 29 peo-
ple die every day involving motor-vehicle crash due to alco-
hol intoxication. This amounts to more that $44 billion of an-
nual cost for alcohol-related crashes [1]. Informal intoxication
tests like breathalyzers are unreliable as indicators for evalu-
ating safe motor vehicle driving, heavy equipment operation,
machine tool use, etc.. Passive detection of intoxication from
voice has important applications to high-risk situations, such as
driving and steering, but there is less research into this speaker
state than into other speaker states. The majority of previous
work uses classic machine learning techniques with Gaussian
Mixture Models (GMMs) and Hidden Markov Models (HMMs)
and learns from hand-extracted features. This paper explores a
Convolutional Neural Network (CNN) based architecture for in-
toxication detection from voice using log Mel spectrograms as
input. We experiment with the time and frequency masking ar-
chitectures for feature extraction and use different combinations
of dense layers and pooling techniques for classification. We
also experiment with using LSTM models, auto encoder models
as well as variational auto encoder model. These CNN-based
architectures require little feature engineering compared to pre-
vious methods and are simple to train on different domains. On
the Alcohol Language Corpus (ALC), the model achieves an
unweighted average recall (UAR) of 66.28%. Our work lays
important groundwork for future research into CNN-based ar-
chitectures for intoxication detection. With future experimenta-
tion and adaption to the ALC dataset, the CNN architecture can
be used to classify intoxicated speech with a higher UAR.
Index Terms: Deep Learning, Audio classification, Intoxica-
tion detection, Alcohol Language Corpus, CNN, VAE, AE, Dis-
entangled VAE

1. Introduction
Alcohol has known effects on human behavior and can be
dangerous when consumed in large amounts. Blood alcohol
concentrations between 0.05% and 0.08% are known to im-
pair judgment, while higher concentrations may cause nausea,
slurred speech, and loss of coordination. Blood alcohol con-
centrations above 0.15% can leave a person unconscious and
may even result in death [1]. Due to alcohol’s effects on human
judgment and coordination, driving while intoxicated poses a
great safety risk to other drivers and passengers on the road.
In fact, nearly 10.5 thousand people in the United States died in
alcohol-impaired driving accidents in 2016, accounting for 28%
of all driving-related deaths in the United States [2]. Thus, it is

important to research and develop techniques for passive detec-
tion of intoxication to alert drivers of their state before they start
driving.

In addition to affecting coordination, alcohol has known ef-
fects on a person’s speech. Alcohol causes a person’s speech to
become slower, and the number of pauses, stutters, and speech
errors also increases. The pitch and fundamental frequency of
a person’s voice may also increase, but this is not consistent
across genders [3].

One can use voice analytics to study the changes in speech
patterns of sober and intoxicated people to help detect intoxica-
tion from voice. Voice analytics is a branch of audio processing
research to analyze spoken conversation and audio patterns us-
ing machine learning or deep learning models to extract and an-
alyze information, including speech content and speaker state,
by analyzing patterns in human speech. Analyzing audio data
presents several challenges and these include voice samples be-
ing affected by gender, age, emotions, room acoustics and prox-
imity to the user affect the voice sample. [4]

Previous work into intoxication detection from audio sam-
ples comes primarily from the 2011 INTERSPEECH Chal-
lenge, which included an Intoxication Detection subtask. For
the subtask, participants had to identify speech in the Alcohol
Language Corpus (ALC) as either sober or intoxicated. The
results of the INTERSPEECH Challenge of 2011 showed that
machine learning models can detect alcoholized speech from
hand-engineered audio features with a highest Unweighted Av-
erage Recall (UAR) of 70.5% [5]. However, there has been little
research into using deep learning methods for detecting alcohol
level from voice.

In this paper, we use a CNN with pooling to classify speech
segments in the Alcohol Language Corpus (ALC) using log Mel
spectrograms as input. Convolution Neural Networks (CNNs)
have not been yet explored for feature extraction in the au-
dio classification pipeline.It is interesting to note that all steps
needed to compute filter banks were motivated by the nature of
the speech signal and the human perception of such signals[6].
The paper discusses various approaches using CNN and mel
scale filter banks to classify voice notes.The proposed CNN-
based architecture requires minimal feature engineering com-
pared to previous methods in intoxication detection. Our exper-
iments show detailed analysis of data-set, complexity of prob-
lem statement and a competitive result in classification.

The remainder of this paper is organized as follows: We
present background information in Section II, and our proposed
intoxication detection architecture is explained in Section III.
In Section IV, we outline the experiments we ran and present
results in Section V. Discussion is presented in Section VI fol-



lowed by Conclusion and Future work in Section VII.

2. BACKGROUND
2.1. INTERSPEECH 2011 Challenge: Intoxication Detec-
tion Sub-challenge

Previous work into intoxication detection comes primarily from
the 2011 INTERSPEECH Challenge. The Challenge focused
on intoxication detection and sleepiness detection, two speaker
states that were less researched in the past. Sleepiness and in-
toxication detection have applications to the security and med-
ical domains, in situations such as driving, steering, and con-
trolling [5]. The Intoxication Detection sub-task of the Chal-
lenge was a supervised binary classification task using the Al-
cohol Language Corpus (ALC) Dataset, which is described in
Section IV. Speech recordings were labeled according to the
Blood Alcohol Content (BAC) of the speaker, and they had to
be classified as either alcoholized for BAC exceeding 0.5 per
mill or sober for BAC equal to or below 0.5 per mill. The offi-
cial audio feature set consisted of 4368 Low-Level Descriptors
(LLDs) extracted using openSMILE and known to be useful
for intoxication detection. Contestants could also extract ad-
ditional low-level and hierarchical features for audio classifica-
tion. Participants were given training and test sets and reported
model performance using Unweighted Average Recall (UAR)
[5]. Our work uses the ALC dataset used in the Intoxication
Detection sub-challenge for supervised binary classification of
speech segments as either sober or intoxicated. We use UAR to
evaluate our models to maintain uniformity in comparing results
obtained from the original challenge.

2.2. Deep Learning in Audio Classification

Deep learning has shown success in a variety of other speech
processing tasks as well, including emotion detection, speaker
recognition, and audio event detection [7] [8] [9]. These deep
models learn high-level features on top of the Low- Level De-
scriptors (LLDs) that are typically used in machine learning
methods, and they outperform standard machinelearning ap-
proaches. Berninger et. al [10] lay the foundation of using
a deep neural network for the speaker intoxication detection
task on the ALC dataset. They use a bi-directional Recurrent
Neural Network (Bi-RNN) with 2 Gated Recurrent Unit (GRU)
layers and Gaussian dropout for the binary intoxication detec-
tion task. The Bi-RNN model has a forward GRU layer and a
backward GRU layer to capture dependencies in the speech sig-
nal in both the forward and backwards directions while avoid-
ing the vanishing gradient problem. [10] use the CMU Sphinx
speech recognition toolkit 40-dimensional filter bank (FBANK)
features from speech segments in the ALC dataset. The spec-
trogram representations of the audio signals are input to the
network. The model achieves an accuracy of 71.30%and un-
weighted average recall of 71.03%, outperforming the winning
submission of the 2011 Challenge with minimal feature engi-
neering.

Other deep learning techniques for speech processing use
Convolutional Neural Networks (CNNs) in the classification
pipeline. Deep CNN models are robust to different audio en-
vironments and speaker styles [11]. They require little feature
engineering and learn high-level feature representations as they
train [7], [12]. Hershey et al. [7] show that CNN architectures
such as AlexNet, VGG, Inception, and ResNet, which are typ-
ically used for image classification, are also effective for large-
scale Audio Event Detection (AED) on the Youtube- 100M

dataset.CNNs have also been used for health-related speech
processing tasks. Wu et al. [13] use a Convolutional Neural
Network (CNN) to detect pathological voice disorders on the
Saarbruecken dataset. They compute spectrogram representa-
tions of normal and pathological speech in the dataset and input
these representations into a CNN pretrained with a Convolu-
tional Deep Belief Network (CDBN). The CNN comprises of
10 convolutional and maxpooling layers followed by a Dense
layer for classification. The CNN-based model performs with
71% accuracy on the test set and achieves an F1-score of 72%.
Moreover, CNNs can be used to successfully classify audio end-
to-end from raw data, requiring no additional feature extraction
[12].

Use of Auto Encoders(AE) is known for improving perfor-
mance of classifiers for detecting anomelies in a better way [14].
Autoencoders have been widely used for obtaining useful la-
tent variables from high-dimensional datasets. Variational Auto
Encoders (VAE) has shown improvement in complex classifica-
tion problems using latent space representation. VAE can also
be used as an tool to generate spectrum of raw audio to learn
specific parameters that are more relevant to classification. J
Hennig used Classifier in a VAE to improve performance of
music regeneration [15]. Corollary research work shows more
accuracy for emotion classification of emotions as compaired to
RNN models [16][17]

Proper Data augmentation methods has shown great im-
provement in the classification of images.Learned augmenta-
tion techniques have explored different sequences of augmenta-
tion transformations that have achieved state-of-the-art perfor-
mance in the image domain [18]. SpecAugment, an augmen-
tation method that operates on the log mel spectrogram of the
input audio, rather than the raw audio itself, consists of three
kinds of deformations of the log mel spectrogram.The first is
time warping, a deformation of the time-series in the time direc-
tion. The other two augmentations, inspired by “Cutout”, pro-
posed in computer vision [19], are time and frequency masking,
where we mask a block of consecutive time steps or mel fre-
quency channels. SpecAugment time and frequency masking
has shown great improvement in results of Automatic Speech
Recognition network[20]

It is interesting to note that all steps needed to compute filter
banks were motivated by the nature of the speech signal and the
human perception of such signals[6]. Using these filter banks as
Low-Level audio Descriptors (LLDs) to learn and require care-
ful model adaptation and tuning to account for speaker vari-
ability. CNNs have performed well in audio classification tasks
and are robust to different speaker styles and acoustic environ-
ments [21]. Moreover, they are easy to train and perform well
on weakly labeled datasets [22]. Given the imbalanced classes
in the Alcohol Language Corpus (ALC) and the variability in
speaker gender and style in the corpus, we focused our research
on CNN-based architectures with time and frequency masking
for intoxication detection along with Filter banks used as LLDs.

3. Experiments

In general data is pre-processed by splitting audio files using
sliding window techniques with minimum overlap. Audio files
are read using LibROSA library functions and applied Mel fil-
ter bank.LibROSA is a python package for music and audio
analysis[23]. There are four main experiments tried to classify
data and they are discussed below.



3.1. Convolutional Neural Network (convnet)

CNN models are robust to different audio environments and
speaker styles [11]. The Network uses four layers of CNN.After
post-processing the extracted features into equallength, the fea-
tures are input into 3 Dense layers followed by a pooling mech-
anism and then 2 dense layers followed by pooling layers to
classify the input audio segment as either Sober or Intoxicated.
The 3 fully connected-layers compute high-level embeddings
from the features output from Mel filters. Pooling reduces the
feature map of embeddings while retaining information of an
activation of features [24]. Maximum pooling functions like the
global max pooling layer in a Convolutional Neural Network
(CNN) consists of a single Dense layer with RELU activation.
The maximum prediction is used for classification. The model
is experemented with and without time and frequency masking
techniques where we mask a block of consecutive time steps
or mel frequency channels. Loss function used is binary cross
entropy.

3.2. LSTM and Conv LSTM Networks

LSTM have shown great results in classifying ACL dataset [5].
The LSTM network comprises of bi-directional Recurrent Neu-
ral Net-work (Bi-RNN) with 2 Gated Recurrent Unit (GRU)
layers and Gaussian dropout for the binary intoxication detec-
tion task. The Bi-RNN model has a forward GRU layer and a
backward GRU layer to capture dependencies in the speech sig-
nal in both the forward and backwards directions while avoid-
ing the vanishing gradient problem. The Conv LSTM network
comprises of combination of previously discussed convnet fol-
lowed by LSTM layer. The network comprises of two dense
CNN layers followed by pooling and a LSTM layer. Binary
cross entropy is used as loss function in both the models.

3.3. Convolutional Auto Encoder and Variational Auto en-
coders Networks

Auto Encoders (AE) is known for improving performance of
classifiers for detecting anomelies in a better way[14]. AEs have
been widely used for obtaining useful la-tent variables from
high-dimensional datasets. In general AE comprise of a En-
coder, Latent space and Decoder. In the model the latent space
generated after multiple layers of CNN in encoder is passed
through Decoder CNN network for reconstruction of the input
Mel filtered data as well as a classifier network of CNN to iden-
tify class. The MSE loss function is used to calculate recon-
struction loss and binary cross entropy for classification loss.
For Variational Auto encoder classifying model is trained with
evidence lower bound (ELBO) loss and binary cross entropy.

3.4. Disentangled Classification

The output of the LSTM Variational Autoencoder per-formed
better than expected since the reconstruction of signals is hard
and we achieved good accuracy on the model. Rather than use
the output of the VAE directly for classification, we decided to
use the representation for classification. We replace the decoder
with a classifier since we want to perform classification. Ac-
cording to the paper, we can separate time-variant from time-
invariant features and we decided to implement this as EEG
data contains a lot of additional noise which are time-variant
like muscle movement, eye blinks, etc.. [25] shows that beats
perform well when it comes to classification.

Figure 1: Tnse train data 3D visualization

4. Discussion
The results of the experiments implemented are shown below.
In general CNN architectures with Mel-Filter input performed
better than other architecture. The data imbalance is one of the
main issues that affect the network. To solve this we initially use
standard undersampling techniques to reduce the majority class
samples and make the event rate of the train set to an equal class
distribution. There is a marked improvement in network per-
formance. However, this is significantly outperformed by aug-
menting the minority class using the SpecAugment techniques
presented by Google.

We observed that time and frequency masking augmenta-
tion presented in SpecAugment help network learn the parame-
ters in best way for the CNN network. The time-warping tech-
nique from SpecAugment again, is a very task-oriented and pa-
rameter sensitive technique. This means picking the right pa-
rameters is of utmost importance, but the lack of a well defined
method to pick these parameters makes it difficult to work with
for our task, and thereby it produced poor results

It was noted that LSTM networks had poor performance,
with one of the main reasons being large sequence sizes that
the network couldn’t possibly handle. As a result, performance
with Bi-LSTMs was equally poor.

Subsequent experiments involved the best CNN model be-
ing conditioned with demographic information such as speak-
ers’ gender, age, BMI, mood before and after the interview,
drinking and smoking habits and the weather conditions and car
details in which the recordings were made. Despite a marked
improvement expected, none of these techniques could outper-
form the best CNN model.

Table 1 shows compiled results of various experiments with
ALC dataset. The complexity of dataset is very high and along
with high-dimensional spectrum too it is difficult to classify in-
toxicated and sober sample to high accuracy because of no clear
distinction. This can be observed in figure 1 and 2 which repre-
sent TNSE 3D visualization of log Mel data.

5. Conclusions
Our work explores how CNN architectures can be used in the
audio classification pipeline for the intoxication detection task.
Our work establishes a solid baseline for further experimenta-
tion into CNN techniques for intoxication detection. Although
many of the experiments we ran did not train, adding differ-



Figure 2: Tnse test data 3D visualization

Table 1: Test UAR for trained networks on ACL dataset

Network Demographics Augmentation method UAR

Convnet None None 61
Convnet None Time and frequency masking 66.28
Convnet None Time wrapping 62
LSTM None None 58.12

Conv- LSTM None None 62.27
Autoencoder None None 65.53

Variational Autoencoder None None 62.78
Convnet All Time and frequency masking 65.2
Convnet Only gender Time and frequency masking 64.3
Convnet Only drinking habits Time and frequency masking 63.1
Convnet Only BMI Time and frequency masking 62.6
Convnet Only smoking habits Time and frequency masking 60.4

Disentangled VAE None None 60.2

ent augmentation like time and frequency masking techniques
to the standalone CNN architecture helped with model training
and improved UAR by 7%, compared to the worst-performing
model in the table. The best result we achieved was using the
CNN model, using Time and frequency masking. The model
achieved a UAR of 66.28%. This result is 9% higher than the re-
sults we were getting from standalone LSTM model with UAR
of 58.12%.

.
Other experiments we can explore for future work are out-

lined below:

• Extract audio features:

– Spectral Centroid

– Spectral Rolloff

– Spectral Bandwidth

– Zero Crossing Rate

– MFCC (mean over time)

– Chrome Features

• With the above extracted features, feed it along with Mel
filters (our existing state of art model)

• Focus on low level features

• Work on fine-grained classification
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